Info
Guest Post Description
How to create PIVOT table using Pandas DataFrame in Python
def Kickstarter_Example_97(): print() print(format('How to create Pivot table using a Pandas DataFrame','*^82')) import warnings warnings.filterwarnings("ignore") # load libraries import pandas as pd # Create dataframe raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'], 'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'], 'TestScore': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3]} df = pd.DataFrame(raw_data, columns = ['regiment', 'company', 'TestScore']) print(); print(df) # Create a pivot table of group means, by company and regiment df1 = pd.pivot_table(df, index=['regiment','company'], aggfunc='mean') print(); print(df1) # Create a pivot table of group score counts, by company and regimensts df2 = df.pivot_table(index=['regiment','company'], aggfunc='count') print(); print(df2) # Create a pivot table of group score max, by company and regimensts df3 = df.pivot_table(index=['regiment','company'], aggfunc='max') print(); print(df3) # Create a pivot table of group score min, by company and regimensts df4 = df.pivot_table(index=['regiment','company'], aggfunc='min') print(); print(df4) Kickstarter_Example_97()